Inversion d'occultations solaires par Titan observées par VIMS-IR : Ce que la brume et le méthane révèlent sur la dynamique atmosphérique et le climat de Titan.

Pascal Rannou*¹, Maélie Coutelier², Sébastien Lebonnois³, Luca Maltagliati⁴, Michael Rey⁵, Emmanuel Rivière⁵, and Sandrine Vinatier⁶

¹Groupe de spectrométrie moléculaire et atmosphérique - UMR 7331 − Université de Reims Champagne-Ardenne : UMR7331, Centre National de la Recherche Scientifique : UMR7331 − France

²LATMOS − INSU, Université de Nantes − France

³LMD − IPSL, Sorbonne Université − France

⁴Nature Astronomy Springer Nature Research − Royaume-Uni

⁵GSMA − Université de Reims - Champagne Ardenne − France

⁶LESIA − Observatoire de Paris, Université PSL, CNRS-UMR 8112, LERMA, F-92195 Meudon, France

− France

Résumé

Sur Titan, le méthane est responsable de la chimie prébiotique complexe, de la brume globale, de la majeure partie de la couverture nuageuse et des précipitations qui modèlent le paysage. Ses sources sont situées dans des réservoirs de liquide à la surface et sous la surface et son puits est la photodissociation à haute altitude. Les climats présents et passés de Titan dépendent fortement de la connexion entre les sources de surface et les couches supérieures de l'atmosphère. Malgré son importance, très peu d'informations sont disponibles sur ce sujet.

Nous avons réanalysé, en utilisant des données spectroscopiques récentes, quatre occultations solaires observées avec la partie infrarouge de l'instrument VIMS sur Cassini, avant et après l'équinoxe de printemps nord.

On retrouve une couche riche en méthane à 165 km et à 70°S (rapport de mélange 1,45 % \pm 0,1 %), une stratosphère de fond plus sèche (1,0 % – 1,2 %) et des profils de méthane à d'autres latitudes avec des structures remarquables. En l'absence de production locale, cela révèle une intrusion de méthane dans la stratosphère par circulation, sans doute depuis les tropiques lors d'évènements convectifs et une inhibition du transport de méthane aux autres latitudes. Des intrusions vers la stratosphère conditionnées par les évènements convectifs participent au cycle du méthane de façon bien plus complexe qu'une advection lente, et ce, à toutes les échelles de temps. Ces résultats montrent que les échanges entre la troposphère et la stratosphère se font à quelques endroits privilégiés plutôt que globalement, et sans doute de façon sporadique.

Nous avons également caractérisé les profils d'extinction de la brume et leur pente spectrale.

^{*}Intervenant

Nous trouvons que les aérosols sont des agrégats avec une dimension fractale de Df $2,3\pm0,1$, plutôt que Df 2 comme on le pensait auparavant. Notre analyse révèle également des variations notables dans leurs tailles et/ou morphologies liées à la circulation atmosphérique. Ces caractéristiques modifient les propriétés mécaniques et optiques des aérosols et, par là, leur rôle dans le climat de Titan.